Bridging the Gap: USU Computer Scientists Develop Model to Enhance Water Data from Satellites

Pouya Hosseinzadeh, left, a USU doctoral student in computer science, with faculty mentor Soukaina Filali Boubrahimi, right, assistant professor in the Department of Computer Science, published a description of a machine learning method to enhance water data collected by satellites in an AGU journal. He presents the research at USU’s 2024 Spring Runoff Conference March 26–27.

Satellites encircling the Earth collect a bounty of water data about our planet, yet distilling usable information from these sources about our oceans, lakes, rivers and streams can be a challenge.

“Water managers need  for  resource management tasks, including lake  monitoring, rising seas border shift detection and erosion monitoring,” says Utah State University computer scientist Pouya Hosseinzadeh. “But they face a trade-off when reviewing data from currently deployed satellites, which yield complementary data that are either of high spatial or high temporal resolutions. We’re trying to integrate the data to provide more accurate information.”

Varied data fusion approaches present limitations, including sensitivity to atmospheric disturbances and other climatic factors that can result in noise, outliers and missing data.

A proposed solution, say Hosseinzadeh, a doctoral student, and his faculty mentor Soukaina Filali Boubrahimi, is the Hydrological Generative Adversarial Network—known as Hydro-GAN. The scientists developed the Hydro-GAN model with USU colleagues Ashit Neema, Ayman Nassar and Shah Muhammad Hamdi, and describe this tool in the online issue of Water Resources Research.

 

Hydro-GAN, says Filali Boubrahimi, assistant professor in USU’s Department of Computer Science, is a novel machine learning-based method that maps the available satellite data at low resolution to a high-resolution data counterpart.

“In our paper, we describe integrating data collected by MODIS, a spectroradiometer aboard the Terra Earth Observing System satellite, and the Landsat 8 satellite, both of which have varied spatial and temporal resolutions,” she says. “We’re trying to bridge the gap by generating new data samples from images collected by these satellites that improve the resolution of the shape of water boundaries.”

The dataset used in this research consists of  collected during a seven-year span (2015–2021) of 20 reservoirs in the United States, Australia, Mexico and other countries. The authors present a case study of Lake Tharthar, a salt water lake in Iraq, comparable in size to Great Salt Lake and facing similar climate and usage pressures.

“Using seven years of data from MODIS and Landsat 8, we evaluated our proposed Hydro-GAN model on Lake Tharthar’s shrinking and expansion behaviors,” Hosseinzadeh says. “Using Hydro-GAN, we were able to improve our predictions about the lake’s changing area.”

Such information is critical for the region’s hydrologists and environmental scientists, he says, who need to monitor seasonal dynamics and make decisions about how to sustain the lake’s water supply.

The scientists demonstrate Hydro-GAN can generate high-resolution data at historical time steps, which is otherwise unavailable, for situations where a large amount of historical data is needed for accurate forecasting.

“We think this will be a valuable tool for  and, moving forward with similar models, we can employ a multi-modal approach to provide data in addition to images, including information about topology, snow data amounts, streamflow, precipitation, temperature and other climate variables,” says Hosseinzadeh, who presents the research during USU’s 2024 Spring Runoff Conference March 26–27 in Logan, Utah.

ARCHAEOLOGISTS UNCOVER THE HERITAGE OF A MARGINALISED COMMUNITY

Finds from Vaakunakylä, including wartime bullet casings, high-end porcelain and a child’s doll.

Archaeologists have excavated the former working-class neighborhood of Vaakunakylä near Oulu, west-central Finland and interviewed its previous inhabitants, revealing the rich heritage of this marginalized community.

Vaakunakylä was initially established by German troops stationed in Finland during the Second World War and was abandoned once they retreated from Finland between 1944–45.

Finns left homeless as a result of the conflict moved into the barracks in the late 1940s, forming a community that existed largely outside of the emerging Finnish welfare state.

As a result, the neighborhood was labeled as “criminal and restless,” leading to the marginalization of Vaakunakylä’s populace and the eventual demolition of the settlement against the residents’ wishes during the late 1980s.

“The outside perception of what might be referred to as ‘bad’ neighborhoods can be markedly different from the ways the communities see themselves,” says lead author of the research Dr. Oula Seitsonen. “Archaeology can offer a tool to investigate the realities of life in such places.”

To investigate Vaakunakylä from the point of view of its residents, Dr. Seitsonen and a team of researchers from the University of Oulu excavated at Vaakunakylä and spoke with former inhabitants of the community to collect their memories. Their results are published in the journal Antiquity.

ARCHAEOLOGISTS UNCOVER THE HERITAGE OF A MARGINALISED COMMUNITY

3D model of the foundation of a German barrack turned into family housing in the post-war years.

“Archaeologies of 20th-century working-class communities and conflicts have been little-studied in Finland, and the Vaakunakylä project combines these both,” states Dr. Seitsonen. “Material heritage of the Vaakunakylä area was practically unknown before our research, and by studying a former Nazi military camp turned into a Finnish working-class neighborhood we can probe various neglected societal themes.”

Remains of buildings uncovered at the site highlight the efforts made by residents to improve the facilities at Vaakunakylä. Barracks were refurbished as family housing, and one was even transformed into a sauna.

Furthermore,  such as waste uncovered from rubbish pits reveals a higher standard of living than previously believed, with some households owning high-end porcelain sets.

The discovery of toys, children’s medication and dummies suggests that children at Vaakunakylä also enjoyed a good quality of life. In this way, the project gives a glimpse into the often-silenced lives of women and children in the past.

Interviews with former residents returned a generally positive view of the community, with many stating that life in Vaakunakylä was “good enough.”

Importantly, this means that the poor reputation of Vaakunakylä is largely unfounded and highlights the value of archaeological research in giving a voice to marginalized communities.

“Both the finds and the collected oral histories give a different and more nuanced picture of the Vaakunakylä community than the popular image of the area as a restless and criminal slum-like shantytown,” says Dr. Seitsonen. “We hope that this can have a healing aspect when the pent-up feelings are brought to the surface and discussed in public.”

Thermally engineering templates for highly ordered self-assembled materials

Schematic illustration of the template-directed eutectic solidification process. Liquid (gold) AgCl (cyan)-KCl (black) eutectic system solidifies through the pillar template. Credit: The Grainger College of Engineering at University of Illinois Urbana-Champaign

Self-assembled solidifying eutectic materials directed by a template with miniature features demonstrate unique microstructures and patterns as a result of diffusion and thermal gradients caused by the template. Despite the template trying to force the material to solidify into a regular pattern, when the template carries a lot of heat it also can interfere with the solidification process and cause disorder in the long-range pattern.

Researchers at the University of Illinois Urbana-Champaign and the University of Michigan Ann Arbor have developed a template material that carries almost no heat and therefore stops  between the template material itself and the solidifying eutectic material. They accomplished this by forming the template from a material with very low thermal conductivity, ultimately resulting in highly organized self-assembled microstructures.

The results of this research were recently published in the journal Advanced Materials.

“The key novelty of this research is that we carefully controlled the flow of heat. By controlling the flow of heat, the pattern becomes far better and more regular than before because we’re controlling more of the parameters. Previously, the template controlled the flow of atoms, but the heat flows were uncontrolled,” says Paul Braun, a professor of materials science and engineering and director of the Materials Research Laboratory, who led this research along with postdoctoral researcher Sung Bum Kang.

Eutectic materials are a homogeneous mixture that have a melting point that is lower than the melting point of either constituent. Common examples of eutectic systems include solder (a mixture of lead and tin) and mixtures of salt (sodium chloride) and water. When eutectic mixtures are cooled from the liquid phase, they separate into two materials that form a pattern at the solidifying front.

The material doesn’t separate into just two large layers. Instead, it forms structures including a multi-layered structure (lamellar), like a tiered cake, a rod-like structure or even more complex structures. The resulting microstructure of the material, however, is only well-ordered over short distances. Instabilities that arise in the self-assembly process lead to defects in the microstructure and affect the properties of the resulting solid material. For many applications, such as optics or mechanics, very good order over long distances is required.

The solidification process can be controlled by a template consisting of pillars that act as barriers to the movement of atoms and molecules. This forces the structure to form a more regular pattern when it solidifies. But the issue, Braun explains, is that the pillars carry a lot of heat, and instead of having a flat, solidifying front, the shape of the front becomes complex. This leads to irregular patterns and long-range disorder.

“We figured out how to make the pillars so that they were really good insulators,” Braun says. “So all of the heat is only flowing through the material that’s solidifying. The template is now only acting as a barrier to the flow of atoms, but almost no heat is moving between the solidifying material and the template.”

The researchers explored template materials with lower thermal conductivities than the eutectic system and found that low thermal conductivity template material resulted in highly organized microstructures with long-range order. Specifically, they used porous silicon (essentially a silicon foam) that is at least 100 times less thermally conductive than . The template material’s low thermal conductivity minimizes the flow of heat in the “wrong” direction.

“The thermal conductivity of the template is a critical factor in determining the rate of heat transfer during the solidification process,” Kang says. “The  we used for the templates has a  and led to about 99% uniformity of the unit cells of the structure.”

In comparison, with higher thermal conductivity crystalline silicon pillars, the expected pattern is only present in 50% of the unit cells.

“This means we can design eutectic materials with highly predictable and consistent properties. This level of control is crucial for applications where uniformity directly impacts performance,” Kang says.

Passing Stars Altered Orbital Changes in Earth, Other Planets

llustration of the uncertainty of Earth’s orbit 56 million years ago due to a potential past passage of the Sun-like star HD7977 2.8 million years ago. Each point’s distance from the center corresponds to the degree of ellipticity of Earth’s orbit, and the angle corresponds to the direction pointing to Earth’s perihelion, or closest approach distance to the Sun. 100 different simulations (each with a unique color) are sampled every 1,000 years for 600,000 years to construct this figure. Every simulation is consistent with the modern Solar System’s conditions, and the differences in orbital predictions are primarily due to orbital chaos and the past encounter with HD 7977. Credit: N. Kaib/PSI.

I

Stars that pass by our solar system have altered the long-term orbital evolution of planets, including Earth, and, by extension, modified our climate.

“Perturbations—a minor deviation in the course of a celestial body, caused by the gravitational attraction of a neighboring body—from passing stars alter the long-term orbital evolution of the sun’s planets, including Earth,” said Nathan A. Kaib, Senior Scientist at the Planetary Science Institute and lead author of “Passing Stars as an Important Driver of Paleoclimate and the solar system’s Orbital Evolution” that appears in The Astrophysical Journal Letters. Sean Raymond at the Laboratoire d’Astrophysique de Bordeaux also contributed to this work.

“One reason this is important is because the geologic record shows that changes in the Earth’s orbital eccentricity accompany fluctuations in the Earth’s climate. If we want to best search for the causes of ancient climate anomalies, it is important to have an idea of what Earth’s orbit looked like during those episodes,” Kaib said.

“One example of such an episode is the Paleocene-Eocene Thermal Maximum 56 million years ago, where the Earth’s temperature rose 5-8 degrees centigrade. It has already been proposed that Earth’s orbital eccentricity was notably high during this event, but our results show that passing stars make detailed predictions of Earth’s past orbital evolution at this time highly uncertain, and a broader spectrum of orbital behavior is possible than previously thought.”

Simulations (run backward) are used to predict the past orbital evolution of the Earth and the sun’s other planets. Analogous to weather forecasting, this technique gets less accurate as you extend it to longer times because of the exponential growth of uncertainties. Previously, the effects of stars passing near the sun were not considered in these “backward forecasts.”

Credit: Planetary Science Institute

As the sun and other stars orbit the center of the Milky Way, they inevitably can pass near one another, sometimes within tens of thousands of au, 1 au being the distance from the Earth to the sun. These events are called stellar encounters. For instance, a star passes within 50,000 au of the sun every 1 million years on average, and a star passes within 10,000 au of the sun every 20 million years on average. This study’s simulations include these types of events, whereas most prior similar simulations do not.

 

 

 

One major reason the Earth’s orbital eccentricity fluctuates over time is because it receives regular perturbations from the giant planets of our  (Jupiter, Saturn, Uranus, and Neptune). As stars pass near our solar system, they perturb the giant planet’s orbits, which consequently then alters the orbital trajectory of the Earth. Thus, the  serve as a link between the Earth and passing stars.

Kaib said that when simulations include stellar passages, we find that orbital uncertainties grow even faster, and the time horizon beyond which these backward simulations’ predictions become unreliable is more recent than thought.

This means two things: There are past epochs in Earth’s history where our confidence in what Earth’s orbit looked like (for example, its eccentricity or degree of circularity) has been too high, and the real orbital state is not known, and the effects of passing stars make regimes of orbital evolution (extended periods of particularly high or low eccentricity) possible that past models did not predict.

“Given these results, we have also identified one known recent stellar passage, the sun-like star HD 7977, which occurred 2.8 million years ago, that is potentially powerful enough to alter simulations’ predictions of what Earth’s orbit was like beyond approximately 50 million years ago,” Kaib said.

The current observational uncertainty of HD 7977’s closest encounter distance is large, however, ranging from 4,000 au to 31,000 au. “For larger encounter distances, HD 7977 would not have a significant impact on Earth’s encounter distance. Near the smaller end of the range, however, it would likely alter our predictions of Earth’s past ,” Kaib said.

SETI institute employs SETI ellipsoid technique for searching for signals from distant civilizations

SETI ellipsoid. Credit: Zayna Sheikh

A team of researchers from the SETI Institute, Berkeley SETI Research Center and the University of Washington reported an exciting development for the field of astrophysics and the search for extraterrestrial intelligence (SETI), using observations from the Transiting Exoplanet Survey Satellite (TESS) mission to monitor the SETI Ellipsoid, a method for identifying potential signals from advanced civilizations in the cosmos.

The SETI Ellipsoid is a strategic approach for selecting potential technosignature candidates based on the hypothesis that , upon observing significant galactic events such as supernova 1987A, might use these occurrences as a focal point to emit synchronized signals to announce their presence.

In this work, researchers show that the SETI Ellipsoid method can leverage continuous, wide-field sky surveys, significantly enhancing our ability to detect these potential signals. By compensating for the uncertainties in the estimated time-of-arrival of such signals using observations that span up to a year, the team implements the SETI Ellipsoid strategy in an innovative way using state-of-the-arc technology.

“New surveys of the sky provide groundbreaking opportunities to search for technosignatures coordinated with supernovae.” said co-author Bárbara Cabrales.

“The typical timing uncertainties involved are a couple of months, so we want to cover our bases by finding targets that are well-documented over the course of about a year. In addition to that, it’s important to have as many observations as possible for each target of interest so that we can determine what looks like normal behavior and what might look like a potential technosignature.”

In examining data from the TESS continuous viewing zone, covering 5% of all TESS data from the first three years of its mission, researchers utilized the advanced 3D location data from Gaia Early Data Release 3. This analysis identified 32 prime targets within the SETI Ellipsoid in the southern TESS continuous viewing zone, all with uncertainties refined to better than 0.5 light-years.

 

While the initial examination of TESS light curves during the Ellipsoid crossing event revealed no anomalies, the groundwork laid by this initiative paves the way for expanding the search to other surveys, a broader array of targets, and exploring diverse potential signal types.

Applying the SETI Ellipsoid technique to scrutinize large archival databases signifies a monumental step forward in the search for technosignatures. Utilizing Gaia’s highly precise distance estimates, the study demonstrates the feasibility of cross-matching these distances with other time-domain surveys like TESS to enhance monitoring and anomaly detection capabilities in SETI research.

The SETI Ellipsoid method, combined with Gaia’s distance measurements, offers a robust and adaptable framework for future SETI searches. Researchers can retrospectively apply it to sift through archival data for potential signals, proactively select targets, and schedule future monitoring campaigns.

“As Dr. Jill Tarter often points out, SETI searches are like looking for a needle in a 9-D haystack,” said co-author Dr. Sofia Sheikh. “Any technique that can help us prioritize where to look, such as the SETI Ellipsoid, could potentially give us a shortcut to the most promising parts of the haystack. This work is the first step in searching those newly-highlighted parts of parameter space, and is an exciting precedent for upcoming large survey projects like LSST.”

The research is published in The Astronomical Journal.